东方马达

CN
EN

新闻动态

电源设计过程中正确使用冷却风扇的技巧

2017-04-19

大家知道,如果在一个密闭空间内发散热量,该空间内的温度会增加。也即,壳体内的环境温度会上升。如果有一个包含电源和其负载(即它供电的PCB)的壳体,随着电源和其负载在散发热,壳体内的环境温度会上升,进而导致电源和其负载温度的进一步上升,从而可能超出其允许的最高工作温度。

这是个糟糕的情况,热是电子系统产生不可靠性、缩短使用寿命的首要因素,因为电解电容器的使用寿命与其工作温度密切相关。随着温度的升高,其它器件的可靠性也降低;随着散热器越做越小、电源也越来越小的趋势,必须对其进行精细的热管理。一个简单方法,是使用风扇从机体中吹出多余热量。对可能采用对流冷却设计的电源,或只能在较低温度下工作的设备来说,需要遵循以下步骤计算风量。

一些电源被设计成使用系统风扇进行强制冷却。在这种情况下,电源的数据表会给出充分冷却所需的风量。重要的是要记住:这是电源本身所需的风量,而不是某个点(即便离电源很近)的。因为空气将始终沿着阻力最小的路径流通,所以,风扇吹动的风量只有一部分将实际到达需降温的电源。内部挡板将有助于引导空气沿所需的路径到达需冷却的目标器件。

对可能采用对流冷却设计的电源,或只能在较低温度下工作的设备来说,需要遵循以下步骤计算风量。

首先,确定电源或电子设备可以安全工作的最大操作温度。对于电源本身来说,通常50℃——这个温度通常可能会涉及安全认证,降低温度以延长寿命。根据经验,一般情况,将电解电容器外壳温度降低10℃,其使用寿命将延长一倍。

然后,我们需考虑包含电源的设备外壳周围的最高气温;外壳周围的最高气温与最高工作温度之间的差就是最大允许温升。例如,如果电源可在50℃环境下工作,且若包含电源的设备工作在非空调环境,且环境最高温度可达40℃,则电源允许的温升为10℃。

下一步是确定待散热的功耗。机壳内的总功耗是由负载功耗加上电源自身发热的功耗的总和。例如,如果电子电路的负载标称为260W,假定电源的效率是80%,则散发的总热量为260W/0.8,即325W。

最后,就可算出所需的风量。对给定热量来说,为保持特定温升所需的风量,可以采用一个常数(2.6)用一个简单通用的公式算出:

风量(m3/hr)=2.6&TImes;总功耗(W)/允许温升(℃)

在我们的例子中, 所需的风量是:2.6&TImes;325W/10℃=84.5m3/hr

遗憾的是,找到解决方案并不像按上述方案算出所需的风量并据此选择相应规格的风扇那样简捷直白;因为风扇的标称风量数据是按工作在自由空气环境下给出的,但在现实应用中,壳体自然对气流产生阻滞,这被称为压降或压损,从而降低风扇的自由空气流通性能。

压损因应用而异,取决于:PCB的大小和位置、入风口和出风口大小、机壳内空气流经的截面积等。情况变得微妙的是:压损还取决于空气流经壳体时的速度,而反过来,压损又会影响气流速度。气流越快,压损越高,但较高的压损又反过来会降低空气流速。若风扇选型不周到,那么在应用中,当压损与风速达到某个平衡点, 其低于将一定热量排出机壳所需的散热水平时,风扇就可能成为摆设。

确定每一应用的实际压损太过复杂,因为这将需要流体动力学方程方面的详细知识,但可通过使用图1中所示的压损-流率曲线来近似算出。借此可作为入手处,进行进一步评估。